Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetSpatial Precision 0/0/3 High Resolution

ID: 1043_1B NRND

This product supports our Phidget21 libraries. Use as a drop-in replacement for legacy systems.

$80.00

Quantity Available: 100

Qty Price
5 $76.00
10 $72.00
25 $64.00
50 $56.00
100 $52.00
250 $48.00
500 $44.00
1000 $40.00
50+...

For new systems and projects, we recommend using the following product instead of this one.

Note: The 1043_1B has the same functionality as the 1043_0B, except that it has a different high-precision accelerometer chip.

The PhidgetSpatial Precision 0/0/3 is a 3-axis accelerometer that can measure up to ±8g of acceleration in each axis, and has high precision when measuring acceleration within ±2g. The transition from high precision to low precision mode and back is completely seamless and automatic.

Features

  • 3-axis Accelerometer measures up to 8g
  • Higher precision mode when measuring below 2g
  • Sense tilt angle in remotely controlled vehicles
  • Capture motion input data for research purposes
  • Detect the presence of nearby movement or vibration

Guides

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Part Number Price Connector A Connector B Cable Length
3017_1
Mini-USB Cable 28cm 24AWG
$3.00 USB Type A USB Mini-B 280 mm
3018_0
Mini-USB Cable 180cm 24AWG
$4.00 USB Type A USB Mini-B 1.8 m
3020_0
Mini-USB Cable 450cm 20AWG
$12.00 USB Type A USB Mini-B 4.5 m
3036_0
Mini-USB Cable 60cm 24AWG
$3.50 USB Type A USB Mini-B 600 mm
3037_0
Mini-USB Cable 120cm 24AWG
$4.00 USB Type A USB Mini-B 1.2 m
CBL4011_0
Mini-USB Cable 28cm Right Angle
$3.50 USB Type A USB Mini-B (90 degree) 280 mm
CBL4012_0
Mini-USB Cable 83cm Right Angle
$4.50 USB Type A USB Mini-B (90 degree) 830 mm
CBL4020_0
USB-C to Mini USB Cable 60cm
$5.00 USB Type C USB Mini-B 600 mm
CBL4021_0
USB-C to Mini USB Cable 180cm
$6.00 USB Type C USB Mini-B 1.8 m


Getting Started

Welcome to the 1043 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1049 0 Connecting The Hardware.jpg
  1. Connect the PhidgetSpatial to your computer using the USB cable.


Now that you have everything together, let's start using the 1043!

Using the 1043

Phidget Control Panel

In order to demonstrate the functionality of the 1043, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1043.

First Look

After plugging the 1043 into your computer and opening the Phidget Control Panel, you will see something like this:

1043 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Accelerometer

Double-click on the Accelerometer object , labelled PhidgetSpatial Precision 0/0/3 High Resolution' in order to run the example:

1043 Accelerometer Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The measured values reported in g-force can be seen via labels as well as graphical dials. Try tilting the 1043 in different directions to see the labels and graphics change.
  • An extremely accurate timestamp is also reported with the g-force values.


Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

General

The 1043 has a 3-Axis accelerometer that can measure ±8 g’s (±78 m/s2) per axis. It will measure both dynamic acceleration (change in velocity) and static acceleration (gravity vector). The Phidgetspatial 3-Axis 0/0/3 is internally calibrated.

Orientation

1041 0 Axis Diagram.jpg

When working with an accelerometer it is important to know which is the positive and negative direction on each of the axes. This can be determined by orienting the accelerometer along each axis and checking the output. The above image shows what the axis readings should be for each orientation of the 1043.


High Resolution Mode

When the PhidgetSpatial High Resolution 0/0/3 measures an acceleration value with magnitude less than 2g, it will acquire its data from a higher precision accelerometer chip. For these measurements, the average white noise on each axis will be reduced by approximately a factor of ten, and the resolution will increase from 976 μg to 76 μg. The transition from normal to high precision or vice-versa is seamless, with no additional code or equations needed.

Further Reading

For more information on testing and calibrating this device, check the Accelerometer Guide.


What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product Specifications

Accelerometer
Acceleration Measurement Max ± 2 g
Acceleration Measurement Resolution 76.3 μg
Acceleration Bandwidth 497 Hz
Backup Accelerometer
Acceleration Measurement Max ± 8 g
Acceleration Measurement Resolution 976.7 μg
Board Properties
Controlled By USB (Mini-USB)
API Object Name Accelerometer
Current Consumption Max 35 mA
Sampling Speed Min 1 s/sample
Sampling Speed Max 1 ms/sample
Sampling Speed Min (Webservice) 1 s/sample
Sampling Speed Max (Webservice) 16 ms/sample
Analog to Digital Converter Resolution 16 bit
USB Voltage Min 4.4 V DC
USB Voltage Max 5.3 V DC
USB Speed Full Speed
Operating Temperature Min -40 °C
Operating Temperature Max 85 °C
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

Documents

Product History

Date Board Revision Device Version Packaging Revision Comment
September 20120300Product Release
September 20120301Fixed USB bug
October 20150302OS X El Capitan USB fix
January 20180302BAdded plastic shell enclosure, removed USB cable
December 20181302BChanged precision acceleromter chip

Software Objects

Channel NameAPIChannel
3-Axis Accelerometer Accelerometer 0

API


Back Forward
Print this API

Code Samples



Example Options


Downloads

				Make your selections to display sample code.
					

Code Samples

Language:

APIDetailLanguageOS
Accelerometer Visual Studio GUI C# Windows Download
Accelerometer JavaScript Browser Download
Accelerometer Objective-C macOS Download
Accelerometer Swift macOS Download
Accelerometer Swift iOS Download
Accelerometer Visual Basic .NET Windows Download
Accelerometer Max/MSP Multiple Download

Have a look at our spatial boards:

Product Accelerometer Gyroscope Magnetometer
Part Number Price Acceleration Measurement Max Acceleration Measurement Resolution Gyroscope Speed Max Gyroscope Resolution Magnetometer Resolution Magnetic Field Max
1042_0B
PhidgetSpatial 3/3/3 Basic
$60.00 ± 8 g 976.7 μg ± 2000°/s 0.07°/s 3 mG 5.5 G
1043_1B
PhidgetSpatial Precision 0/0/3 High Resolution
$80.00 ± 2 g 76.3 μg
MOT0100_0
PhidgetAccelerometer
$40.00 ± 8 g 250 μg
MOT0110_0
PhidgetSpatial Precision 3/3/3
$100.00 ± 16 g 30 μg 0.004°/s 1.5 mG ± 8 G
MOT1100_0
Accelerometer Phidget
$20.00 ± 8 g 1 mg
MOT1102_0
Spatial Phidget
$30.00 ± 8 g 200 μg ± 2250°/s 1E-05°/s 200 μG ± 8 G
MOT1102_1
Spatial Phidget
$30.00 ± 8 g 250 μg 0.07°/s 1.5 mG ± 8 G